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Abstract— Modern cryptography has increased the security of
the internet significantly. Popular cryptographic schemes such as
symmetric/asymmetric encryption have become an integral part
of internet communication protocols. In order to store or
communicate cryptographic parameters between any involved
parties, cryptographic protocol uses ASN.1 (Abstract Syntax
Notation one) schema to define said parameters, then serialized it
in DER (Distinguished Encoding Rules) or BER (Basic Encoding
Rules), and finally encode it in Base 64 to become a PEM (Privacy
Enhanced Mail) file. However, PEM content was not designed to
be easily readable or modifiable without a different parser for each
different ASN.1 structure. In this paper, the author would like to
propose a method to parse PEM into JSON (JavaScript Object
Notation) formatted file without any loss of structure information.
This technique would allow us to modify or read elements within
any PEM file by just using a regular JSON parser.
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I. INTRODUCTION

Cryptography is an integral part of modern-day internet
security. In fact, cryptography has been tracked to be around as
far back as 1900 BC when it was used by the Egyptians to
decorate the tomb of the dead. Modern cryptography first arises
during the cold war period in the 1970s, and due to the invention
of computers, the field of cryptography has received significant
growth [1].

The world of cryptography revolves around the problem of
hiding information wusing math principles. With the
advancement of modern math and computational power, we
saw the birth of modern crypto schemes, such as symmetric
encryption, asymmetric encryption, key exchange protocol,
secret sharing scheme, and digital signature generation.

However, with the growth of these complex protocols, a new
problem has arisen. How can we represent cryptographic
objects in such a way that we can reliably use them in
communication protocol? That question was answered by the
ITU (International Telecommunication Union) and IETF
(Internet Engineering Task Forces), who introduced the
standardization of ASN.1 schema and its encoding type (e.g.

DER, BER, CER) to describe cryptographic parameters [2] [3]
[4].

On the other hand, JSON is one of the most used markup
languages used to store data. Its readability for both humans and
computers makes it a good choice for a lot of developers to use.
It is also more lightweight and faster than other markup
languages such as XML (Extensible Markup Language) [5].

Every day, secure protocols such as HTTPS (Hyper Text
Transfer Protocol Secure) and SSH (Secure Shell) are used by
servers across the world. Such communication protocols highly
utilize PEM as a way to send cryptographic data. Storing the
PEM file as JSON formatted file might give an advantage in
easier readability and modifiability in the long run, especially
in web servers which heavily use concepts such as cookies and
JWT (JSON Web Token).

Existing popular tools such as OpenSSL lack the ability to parse
PEM directly into JSON, since it is mainly used directly to parse
PEM directly into a running process memory.

In this paper, we will discuss a method to reliably parse a PEM
file into a human readable JSON without any loss of
information, using modular arithmetic and recursive descent
parse tree. We will then implement it from scratch in the C
programming language for efficiency. Lastly, we will discuss
how this technology can be applied, and what we can improve
from our current implementation method.

II. THEORITICAL BACKGROUND
A. Modular Arithmetic

Modular arithmetic is a system of arithmetic in discrete math in
which the value of the arithmetic group is limited to a certain
field. This field is determined by a value called the modulus. A
value x is an element of a modular arithmetic system with a
modulus m, if and only if 0 < x < m. We can think of modular
arithmetic as counting with “wrapping around”.
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Fig 1. Example of a simple modular arithmetic on clock
Source:

Another important concept in modular arithmetic is
congruence. We define that an integer a and b is called
congruent modulo m if and only if:

m| (a — b)|(1)

We define that if an integer a and b is congruent modulo m,
we will use the following notation:

a = b (pod m)(2)

Which we can read as “a is congruent to b in modulus m” or
“a is congruent to b modulo m”. Similarly, if two integer is not
congruent, then we will use the following notation [6]:

a % b (mod m)(3)

There are many applications of modular arithmetic in
computer science, we will use the property of modular
arithmetic in our implementation method later.

B. Graph, Tree, and Rooted Tree

A graph is a mathematical object used to represent the
relationship between a discrete object and another discrete
object. We define that a vertex is a discrete object, and an edge
is a representation of the relationship between vertices. A graph
is usually presented in a geometrical manner using a circle as a
vertex and a line connecting the circle as an edge [7].

{/(‘Lﬁiﬁ\\///\\// AN

Fig 2. Classical Konigsberg bridge graph reprsentation

Formally, a graph is defined as a tuple (V, E) where V is the set
of all vertices, and E is the set of all edges. It must be satisfied
that the set V must not be empty, but the set E can be empty [7].

We define a path of length n between two vertices v; and v, to
be a sequence of edges such that the first edge is connected to

vertex vy, the last edge is connected to v,. We define a cycle to
be a path which begins and ends at the same vertex, without
repeating any of the edges in the sequence.

Fig 3. Example of a path and cycle on a graph

A tree is a graph which has no cycle, and there exists a unique
path between any of the vertices. All trees are a subset of graph.
Tree has a special property that if there are N vertices, then there
will be exactly N-1 edges [8].

Fig 4. Example of a tree

A rooted tree is a tree in which a special vertex is chosen as a
root and is assumed to have the first order of traversal. We can
think of a root in a rooted tree as an “entry point” to enter the
tree [9].

Fig 5. Example of a rooted tree

We will define the depth of a vertex in a rooted tree as the
distance between the vertex and the root of the tree. We also
define that if two vertices are connected, then the vertex with
the higher depth is a child of the other vertex. Similarly, the
vertex with the lower depth is a parent of the other vertex [9].
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Fig 5. Example of a rooted tree and its depth properties

C. Abstract Syntax Notation One

Abstract syntax notation one is a formal notation used to define
data and telecommunication protocol, which was standardized
by the ITU. Formally, ASN.1 is a set of clauses which use the
character from the ASN.1 character set [2].

Atoz (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z)

atoz (LATIN SMALL LETTER A to LATIN SMALL LETTER Z)

0 to 9 (DIGIT ZERO to DIGIT 9)

' (EXCLAMATION MARK)
(QUOTATION MARK)

& (AMPERSAND)

' (APOSTROPHE)

( (LEFT PARENTHESIS)

) (RIGHT PARENTHESIS)

* (ASTERISK)
(COMMA)

- (HYPHEN-MINUS)

. (FULL STOP)

/ (SOLIDUS)

: (COLON)

: (SEMICOLON)

< (LESS-THAN SIGN)

= (EQUALS SIGN)

> (GREATER-THAN SIGN)

[ (COMMERCIAL AT)

[ (LEFT SQUARE BRACKET)

1 (RIGHT SQUARE BRACKET)

. (CIRCUMFLEX ACCENT)

B (LOW LINE)

{ (LEFT CURLY BRACKET)

I (VERTICAL LINE)

} (RIGHT CURLY BRACKET)

- (NON-BREAKING HYPHEN)

Fig 6. Abstract Syntax Notation One character set

We can think of ASN.1 as a pseudocode to design data types
which would be used in communication. Fundamentally,
ASN.1 uses type-definition assignment clause in the form of,

<type> ::= <definition1> | <definition2> | <definition3> | ...

Which means that the type <type> can be defined as
<definition1> or <definition2> or <definition3> and so on. A
definition is just another type. Which means ASN.1 definition
is naturally recursive. The base for this recursion is the ASN.1
built-in types [2]:

BuiltinType ::=
BitStringType

|  BooleanType

|  CharacterStringType

| ChoiceType

|  DateType

|  DateTimeType

|  DurationType

|  EmbeddedPDVType

|  EnumeratedType

|  ExternalType

|  InstanceOfType

|  IntegerType

| IRIType

|  NullType

|  ObjectClassFieldType

|  ObjectIdentifierType

|  OctetStringType

|  RealType

|  RelativeIRIType

|  RelativeOIDType

|  SequenceType

|  SequenceOfType

|  SetType

| SetOfType

|  PrefixedType

|  TimeType

|  TimeOfDayType

Fig 7. Abstract Syntax Notation One Built-in types

ASN.1 also has some keywords which gives special properties
to defined type,
1. OPTIONAL, a type is optional in a definition
2. CHOICE, the definition is valid if at least one type is
chosen
3. DEFAULT, defined a default value of a type in a
definition
4. SEQUENCE, define a SequenceType
SET, define a SetType,
6. SIZE(MIN...MAX), the type is restricted to have size
in the range of [MIN...MAX).

hd

In cryptographic use, ASN.1 mostly uses the following built-
in types:

1. BooleanType (True or False)

2. IntegerType (Arbitrarily big integer)

3. NullType (Type which indicate another type has no
value)

4. OctetStringType (Sequence of byte character)

BitStringType (Sequence of bit character)

6. ObjectldentifierType (String which uniquely identify
another type)

7. DateTimeType (String in ISO time and date format)

8. SequenceType (Sequence of other type, order of
element has a meaning)

9. SetType (Set of other type, order of element has no
meaning)

(93]

Other than the built-in types, cryptographic objects also use
the type ReferencedType such as:

1. UTF8String
2. TA65String
3. Printable String
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4. To6l1String
5. Numeric String

These types can be used to define a cryptographic object as
needed, for example here are the definitions of an RSA private
key [10]:

RSAPrivateKey
version
modulus
publicExponent
privateExponent
primel

1= SEQUENCE {
Version,
INTEGER,
INTEGER,
INTEGER,
INTEGER,
INTEGER, -
INTEGER, - d mod (p-1)

INTEGER, - d mod (gq-1)

INTEGER, -- (inverse of g) mod p
OtherPrimeInfos OPTIONAL

prime2
exponentl
exponent2
coefficient
otherPrimeInfos

Fig 8.1. Example of ASN.1 structure in cryptography

OtherPrimelInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimelInfo

OtherPrimeInfo
prime

::= SEQUENCE {
INTEGER,
INTEGER,
INTEGER

exponent
coefficient

Fig 8.2. Example of ASN.1 structure in cryptography
D. Basic Encoding Rules

Basic encoding rules are the encoding rules standardized by
ITU to serialize an ASN.1 structure into bytes which actually
can be transferred in communication. The encoding rules follow
a TLV (Tag-Length-Value) structure, in which a specific type
will be encoded as a unique tag, followed by length of its
content, and then the actual value of its content [3].

Table 1. Tag value for structure type in BER

Type Tag Value
BooleanType 0x1
IntegerType 0x2
BitStringType 0x3
OctetStringType 0x4
NullType 0x5
ObjectldentifierType 0x6
UTF8StringType 0xC
[ASStringType Ox16
UTCTimeType 0x17
SequenceType 0x30
SetType 0x31

A type can either be a primitive type or a constructed type. A
primitive type cannot have another type inside its content, while
a constructed type can (recursive).

The length component of a type encoding can have 3 forms [3]:

1. Short form:
Length is described by 1 byte, must be indicated by the
most significant bit having 0 value.

2. Long form:
The first byte describes how many bytes will be used
to describe the length. The number formed by bits 1-7
in the first byte, is the number of next consecutive
bytes describing the length.

3. Indeterminate form:
The first byte has its most significant bit set to 1, and
all other bits set to 0. In this form, the content value
will only end when 2 consecutive bytes with value 0
appear.

The content of a type also has special rules on how to construct
them into serialized bytes, such as the following [3]:

1. BooleanType (primitive):
The value must only be one byte in length. If the value
is 0x00 then the Boolean value is False, if the value is
any non-zero value, then the Boolean value is True.

2. IntegerType (primitive):
The integer value can be formed by concatenating all
content bytes and treating the first byte as the most
significant byte, then turning the concatenated number
into base 10.

3. BitStringType (primitive or constructed):
The bit string value can be formed by concatenating
all content bytes, then turning the concatenated
number into base 2.

4. OctetStringType (primitive or constructed):
The bit string value can be formed by concatenating
all content bytes, then turning the concatenated
number into base 16.

5. NullType (primitive):
The content length must be 0 bytes. No value is to be
processed. NullType only indicates the absence of
value.

6. ObjectldentifierType (primitive):

Object identifier consists of some base 10 numbers
separated by a ‘. character. These number are called
subidentifier. The first byte is formed by multiplying
the first subidentifier by 40, then adding the result with
the second subidentifier. All other subidentifiers are
formed by concatenating consecutive bytes with MSB
(Most Significant Bits) set to 1 with all bytes which has
MSB set to 0 on its right.

All other string types are serialized normally by getting the
unicode character represented by each byte on its content.

E. Distinguished Encoding Rules
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Distinguished encoding rules are a subset of basic encoding
rules with more restriction [3],

1. All type length must not be in the indeterminate form
A BooleanType with all bits set to 1 has the value
True, if not then it has the value False.

3. Any string type must be primitive and not form a
constructive type.

Most cryptographic objects use the DER encoding rules to
serrialize ASN.1 to avoid ambiguity and to create a stricter
parsing rule. However certain scheme such as the PKCS#8
(Public-Key Cryptography Standards number 8), uses the BER
encoding [11].

F. Base 64 and Privacy Enhanced Mail

An ASN.1 Structure encoded in BER or DER will have a raw
bytes value, which is not fit for communication protocol in
some textual platform such as e-mail or text documents [12].
To reliably send binary encoded data using textual means,
another encoding scheme must be used.

A Privacy Enhanced Mail has 3 components,

1. Header
2. Base64 Content
3. Footer

Each header is formatted as follows:

Here, <object> can be any human readable string describing the
base 64 encoded content. <object> between the header and
footer must match. However, one thing to note is that in general,
PEM file uses non-strict schema so that the <object> may not
accurately the ASN.1 structure being encoded.

For example, <object> may describe a private key, but without
any detail on what specific ASN.1 structure is used on the
private key.

The base 64 encoding on the content is done by taking each
consecutive 3 bytes value and turning it into 4 new bytes with
six bits per bytes. The new bytes are then mapped into a list of
predetermined values. If there is not enough 3 consecutive
bytes, then a special padding character will be appended to the
result.

Encoding Value Encoding Value Encoding Value Encoding
34 i 51
35

36

S H XY

VCo~NoukrwNheES
=]
N+t OVONOUAREWNREON

A
B
©
D
E
F
G
H
I
J
K
L
M
N
(0]
P
Q

TUO D OANTOUON<X=ZIT<C—WLD

< X =< CrtwvwKHKHKOTO

Fig 9. Base 64 character value set
Source: https://datatracker.ietf.org/doc/html/rfc4648

Input data: @x14fb9c@3d97e

Hex: 1 4 f b 9 ¢ | 3 d 9 7@
8-bit:

00010100 11111011 10011160 | 00000011 11011001 01111110
6-bit: 000101 001111 101110 ©11100 | 000002 111101 100101 111110
Decimal: 5 15 46 28 @ 61 37 62
Output: F P u C A 9 1 +

Fig 10. Base 64 Encoding Process Example
Source: https://datatracker.ietf.org/doc/html/rfc4648

III. METHOD

In this section, the author would like to discuss the
implementation method which would be used to parse a PEM
formatted file into JSON. All implementation details may not
be able to be fully expressed in this paper due to large
implementation complexity. Instead, the author would describe
the general step in which implementation is taken.

The process will take the following steps:
A. Header and footer validation

In this step, user input will be validated to match the expected
specification of a valid PEM file format. Unlike in general case,
we will use the convention of a strict PEM header, so we can
assume that the header/footer object will describe exactly what
ASN.1 structure exists inside the content.

B. Base 64 decoding

Base 64 decoding is done by doing the reverse procedure of the
previously described base 64 encoding. We will traverse each
base 64 characters and determine the corresponding value
through a lookup table, then each 4 bytes value (which has 6
bits per byte) will be concatenated to form 6 * 4 =24 bytes. The
24 bytes will then be broken down into actual 3 bytes character
of size 8 bits.

We can easily take the first 8 bits of the concatenated 3 bytes
by using a modular arithmetic principle, which is to take the
value modulo 256. Then divide it with 256. Keep repeating the
procedure until the value is 0, then move into the next 4
consecutive 6-bit bytes.
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t base64 valuell;

base64 value init( 1);

uint32 t baseb4 decode(char *encoded, uint8 t *decoded);

uint8 t parse pem(FILE *file, ParseTree *parseTree);

Fig 11. Function used in base64 decoding
Source: Author’s archive

The following function is used in our implementation,

1. Base64 value init: initialize the lookup
base64 value to be used inside base 64 decoding
algorithm

2. Base64 decode: do base 64 decoding of PEM content

3. Parse pem: validate PEM file, and then call
base64_decode into the content of PEM file, then call
the function to start building parse tree representation

table

C. Building Intermediate Parse Tree Representation

At this point, we will have an array of decoded base 64 values
of the PEM content. The array should be a DER/BER encoded
ASN.1 structure which we want to turn into a parse tree.
Mathematically, we can see this process as a function which
takes a sequence of numbers and turns it into a rooted tree
structure.

We will build a parse tree based on a recursive descent parsing
algorithm. This algorithm was chosen since ASN.1 is also a
naturally recursive structure, so it makes sense to do recursive
parsing.

ef struct Node {
Tag tag;

t length;
t *content;

t childNum;

t childCapacity;

uint

struct Node **children;
+ ParseTreeNode;

ef struct {
ParseTreeNode *root;
 ParseTree;

Fig 12. Parse tree structure
Source: Author’s archive

8 t init parse_tree(ParseTree *parseTree);
free parse_tree(ParseTree *parseTree);

vold visualize parse tree(ParseTree *parseTree, FILE *file);

ParseTreeNode *create node(Tag tag, uint32 t length);

uint8 t append_children_node(ParseTreeNode *parent, ParseTreeNode *child);

Fig 13. Function used in parse tree generating
Source: Author’s archive

The following function is used in our implementation,

1. Init parse tree: initialize memory of parse tree

2. Free_prase_tree: destroy memory of parse tree

3. Visualize parse tree: optional function which can be
called if the user wants to see it

4. Create_node: create a node with a certain tag and
length value

5. Append children node: attach a child node into a
parent node

D. Building JSON file from Intermediate Parse Tree

Once the parse tree is built, we can start building a JSON file
by doing a preorder traversal on the intermediate parse tree. By
doing such traversal, we would be able to preserve the order of
ASN.1 structure, and the JSON hierarchy would match the said
structure.

Mathematically, we can think of this process as a function
which takes a rooted tree of an ASN.1 structure and outputs
another isomorphic rooted tree of a JSON structure.

8 t parse_tag type(Tag tag, char *parsedTag);

8 _t parse_boolean(uint8_t *value, uint32_t length

char *parsedValue);

_integer( 8 t *value, uint32 t length, char *parsedvalue);

null(uint8 t *value, uint32 t length, char *parsedvValue);

8_t parse_object_id(uint8_t *value, ul length, char *parsedValue)

8 t parse_bit string(uint value, uint32 t length, char *parsedValue)

t parse octet_string(uint8 t *value, uir t length, char *parsedvalue)

3_t parse_general_string(uint8_t *value, uint32_t length

8 t parse_utc_time(uint8 t *value, uint32 t length, char *parsedValue);

Fig 14. Function used in parsing PEM content
Source: Author’s archive

Function to parse each expected ASN.1 built-in type will be
prepared, and it will be called once a vertex has a matching tag
with expected type. For example, if a vertex has a tag 0x2, the
function parse_integer will be called to its content.

The last step is arguably the hardest one, to fully transform the
PEM into JSON. We must find out what the right ‘key’ for each
JSON value is. For example, in an RSA public key the first
integer is a modulus ‘m’. But in other ASN.1 structures, it is
not.

Which means we must implement a tree-matching algorithm
between our intermediate parse tree with many other expected
ASN.1 structures. This is quite an impossible task for the
author, so this implementation will stop here.

To ensure a unique key for each JSON key, a unique ID will be
prepended to each key inside the generated file.

IV. RESULT AND DISCUSSION
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The resulting parser has been tested using actual PEM files
from open-source repositories, such as the Linux kernel
repository (https://github.com/torvalds/linux) and OpenSSL
source code repository (https://github.com/openssl/openssl).

A. OpenSSL DSA (Data Signature Algorithm) Private
Key Example

MIIBugIBAAKBgQCnP26FvBFgKX3wnBcZMICaCR3aajMexT2G1rMV4FMuj+BZgn0Q
PnUxmUd6UvuF5NmmezibaIqEm4 fGHrV+hktTW1nPcWUZiG70Zq5riDb77Cj cwtel
u+Us0SZL2ppwGIU31RBWI/YV7boEXt45T/23Qx+1pGVvzYARSHCVWIDNSQIVAPCH
Me36bAYD1YWKHKycZedQZmVvAoGATd9MAGaR1vUZb1BGIZn1aG8w42nh5bNdmLso
hkj83pkEP1+IDIxzJAOgXbkqmj8YlifkYofBe3RiU/xhI6h6kQmdtvFNnFQPWAbu
SXQHz LV+I84W9srcWmEBTsLxtU323D0ph2j2XiCTs9v15A1sQReVkusBtX0lan7Y
MuB0ArgCgYAapll6iqz9XrZF1lk26CVcB+KihxWnH7IuHvSLw9YUrJahcBHmbpvtd
941F4gC5w3WPM+vXJofbusk4GoQEEsQNMDaah4m49uUgAy 10VFIIIXuiry+o+0T
tOFDITEAL+YZZariX0D7td0SO19RLMPC6+daHKS9e68u3enxhqnDGQIUB78dhwW77
J6zsFbSEHaQGUmfSeoM=

B. OpenSSL ECC (Elliptic
Parameter Example

Curve Cryptography)

BEGIN EC PARAMETERS
MIIBHwIBATA1BgcqhkjOPQECMBoCAgFwBgkghkj OPQECAWMWCQIBAQIBAGIBVTBg
BC7g0u4lCVIG9eKk+eBinx81bnmg4 rRV1w2NDYZb2Ud4xXbWLwg3UZzNKhqQauMN
BC78EhfUMgqQRSx2C1j tzTDI3QabPDRFODe jTtUMtUkX4cIRLYTRZPRE+PdHhgRq
BFOEEIXidV0B3Mz jwVV6+hDCBMDCglZGxbNKOUy8+ovBayLn54npl74hbwLh+xNg

X3s+sb3cumLV2LIFm1IX1/xzgixZBZx10kX/0EPO6Ph80YVa2qgeKgdQuA/aIxAC
LQEAKFEtqa9ysINJI2Ypd1MewlUy7KUc4D4tEPO3rFeb2H6QmuQKbxMenPz1lvZZwID
AP9w

C. OpenSSL DH (Diffie Helmann) Parameter Example

MIICKgIBADCCARSGCSqGSIb3DQEDATCCAQWCQQEBAP//////////yQ/a0iFow]jTE
xmKLgNwcOSkCTgiKZ8x@Agu+pjsTmyJIRSgh5jjQE3e+VGbPNOKMbMCsKbfIfFDAP
ATVtbVHCReSFtXZiXn7GIExC6aY37WsL/ 1y29Aa37ed4a/ taiZ+ 1 rp8KEXXLH+Z]
KGZR70RbPcIATfLihY78FmNpINhxV@5ppF j+0/STPX4N1XSPco62WHGLzViCFUrue
1SkHcJaWbWcMNU5KvIgE8XRs CMoYIXwykF5GL jb00+0edywYDoYDmyeDouwHoo+1
XV3wbOxSyd4ry/aVWBcY0ZV fOqVaulVeiYYmPoFEBVYjlqKrKpo//////////8C

AQICAgT/BIIBBAKCAQBPXXEKDAZEWKNARF2EZzUo6gcleFNdKMVwa7aT3e2CLTIKN
B4Y6Xs1CS5C4q0OvKhHtdH5LswCxUPTfTQQAOLKPzcdMcGuOvx8g190kvaluxnDOwQ
rpRmC64FbN+h503UJuGUNTFO2AvgLVb6EA637 s0ACWREGLERI3wDpriow/ertIUj
jhzD11255j+z6UVQBNLY882AUSHT j riUzWTYfcynlzpQbZtbIh+005cloI16Ek4AN
c3NtCgwAmTROrsKqHGmaW+pw4s0AAtNIByPTOy72557tqd4mAJKIgCc2I8Lbwbx9Z
s+tEoCidGYuBRNouVH6I6P0wjIhdpUBkIscdv+w8

END PRIVATE KEY
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MIIEVAIBADANBgkqhkiGOw@BAQEFAASCBKYwWggSiAgEAACIBAQCZO7Qsc87uMUbS
mx/gXIiFCenkuh99xxkYh7TDnwqzc74N7VccecpXCqoH3vCXJ fwgH564SqEVtulD
+GVEXEwK/INQXIOUh4LDYcof r6FiaHOFdVGXy8L5kToRWulW+ybcD+0171qoJtG36
bS+0MvbuLbWHNYXNX1ZNZ051ycgusqmsbe8Rk4QaHrGBDUGfyVnupoljs8IKSF3X
f70PhTe/rimuzRM541z1qQ4KyCh23AhAdP29B7mMWMT LoFT6TMv7 fYy4SHhFOMPT
9HWgNzyyQbhzNXglMgLKZBpisfmCLauvEVbO0xAapm1zA0ZIgjkv7kSyun/ComuN
DHiMOFwfAgMBAAECggEANpe2wygFUlqzaWOmsb510736vCGLHdIr1D6eqiTGYuRo
dmHvaD2xJ+uc4vbTo49s1n@y+k/tx2HZdiEabbBzhYJTezodunXJRPeTHTt8ixud
mOKc+rBpaMgmDk7CIMGSRhES3LBIvt1/6d7r9JDkVjqa0amgzVAucyFBs7UmiMZC
YQL+nfo78zFtdcAAsrXUyDuldqG8UfbKIaIqS7UjWKhG6GwqLFNDFunUQhdXYm31
pZwSn30NOie8p2L0JwwPUL3bgVwQHZcAy/UbKxFIuxSkOhqCiLsYUR3I1frdzgPK
OGRmCrQhrCS8F3L5fekoa+ABZPb71D2q22zBy rex9gQKBgQDaTK2/CEgxwIRkkNBs
0qrGzH7 fVHkCEZwFey/cqu2inrJVRVkuNblthGBFE3V2F7Pivm6z11o/UWyPZth]
xIjHQIM9ewKY907I0krkI6iSnhVuYFp7KMzGeuclkAKr4+Y812g+QQnm2AMFmOn/
k52nmvo/60KKTHFGZ1jxDfP1ilwKBgQDS4hm/ADmX]jiyEoxGegEcjRIdseV21u7I0
f8TgsvwPPQhFiV2fOEQOHXQk8IX/WDD/epdSi+LxkC/JEOQcy fIVcmHdm+BBLtUS
j61FVe3Uo01tzu8080WvcNOQIBFEps1XncB70d72aCC5Z27x4GZ+k7Z1RXXMi8oD
/uhKre/rugkBgCS8pLyyUxveUcS+z1iSKF31PKsbAu4CKoBwYCAZ1wvoMBOzZUt7xC
FDGHBoB5btoJOR8Gd zDHy7Y+KKvVXe7EIVS03HiLO/ur+oldrf7JYcgSzH5/vppd
WmDIjB+5]Ynx12w29bsMTPNIRPDrmj91lgzGSliytdpji0GnlhVxTwchPAoGAF+Uq
yau62uNvQ/A+VN1wNhzTwdTVC3yj ImVv5449ZZGi2ESCX4I+0+L901NnhTF3CovVW
PbJAGUMdpwkZ1LFFTwzQ7g11kbkHnH81zQp5kniWH20tSbBgNkDxg5z111PXPLBR
WTDOVLN] zXMO7TViJ8GRD1SZjn3gfCdsItoir3ECgYBwdkk0zgtbqxU+WKgBMyBL
+uC9tb86ZzcvYRPVojDhgtHq1CKcGtTangl9TrTyNdWdQZzeYFL3KQRBtQjU9jNb
Ri0pq/Ce7P3/V+9DBO1luwntJeVMcdmdWFISKkM/h+gVK/TTAWIDST+Sv51wPCwoB]
cW8VMoK8I rGTz5Vwbs rXci
END PRIVATE KEY-

E. Discussion

All test results show that the implemented parser has been
successfull in generating a JSON file with the same hierarchy
as the PEM file, each value has been able to be parsed
successfully, but each JSON key is not able to matched as we
have discussed earlier. Overall the parser works as intended but
still need improvement to become a full PEM to JSON
converter. Each parse tree and generated JSON file share the
same identical structure, which mean the structure is preserved
successfully during the parsing

V. CONCLUSION

This paper explained the usage of modular arithmetic and
rooted tree application inside parse tree to parse privacy
enhanced mail formatted file into a more easily readable and
modifiable JSON file. The implemented parser was able to
preserve the ASN.1 structure successfully between
transformation, when transforming PEM into parse tree and
then transforming the parse tree into a JSON file.

However, the implemented parser was not able to correctly
match each JSON key into the matching ASN.1 structure
variable name, improvement could be made by implementing a
tree matching algorithm which would try to match the received
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parse tree with a database of ASN.1 structure, and then try to
predict what is the correct JSON key.
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VI. APPENDIX

Here is the full parser implementation, which can be found on
author’s GitHub:
https://github.com/FieryBananal01/pem2json
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